

SeRaNDiP - Leveraging Inherent Sensor Random Noise for Differential Privacy Preservation In Wearable Community Sensing Applications Ayanga Imesha Kumari Kalupahana, Ananta Narayanan Balaji, Xiaokui Xiao And Li-Shiuan Peh

1.Introduction

- Wearable community sensing programs are conducted both locally and globally with hundreds of thousands and millions of community participation.
- Participants share their data: profile information, life log information, and sensing data using wearable devices to a central

4. Differential Privacy Noise from Sensors

data aggregator to generate aggregated statistical information on the community.

However, due to recent data breaches at the data aggregators, participants are/will be unwilling to take part in community sensing, if a formal guarantee of privacy preservation is not provided.

5.Sekandip: Inherent Hardware Sensor Noise-based Differential Privacy

2. Differential Privacy in Wearable **Community Sensing**

 \succ Differential Privacy (DP) which gives a statistically strong guarantee is a famous privacy mechanism used Data + Noise in community sensing

Differential private systems make sure that the final released result is independent of the individual's data input.

6. Evaluation

a) User Study

Statistical

b) User-level Accuracy Evaluation

Classifier	Model	Accuracy
Physical Activity Classification	MPU 9250 Accelerometer (SeRaNDiP)	84%
	MPU 9250 Accelerometer (DDP-BL [2])	84%
	MPU 9250 Accelerometer (LDP-BL [3])	84%
	MPU 9250 Accelerometer (G-DDP-BL [4])	84%
	ADXL 345 Accelerometer (SeRaNDiP)	72%
	ADXL 345 Accelerometer (DDP-BL [2])	72%
	ADXL 345 Accelerometer (LDP-BL [3])	72%
	ADXL 345 Accelerometer (G-DDP-BL [4])	72%
Vertical Activity Classification	BMP 388 Barometer (SeRaNDiP)	64.42%
	BMP 388 Barometer (DDP-BL [2])	64.42%
	BMP 388 Barometer (LDP-BL [3])	64.42%
	BMP 388 Barometer (G-DDP-BL [4])	64.42%
	MLP3115A2 Barometer (SeRaNDiP)	52%
	MLP3115A2 Barometer (DDP-BL [2])	52%

- This is achieved by adding statistical noise to data before sharing it with the aggregator.
- \succ Differential privacy has already been implemented in community sensing programs by both Apple and Google.
 - Local DP (variant of distributed DP) by Apple to learn popular emoji
 - Distribute DP by Apple and Google in Exposure Notification Privacy-preserving Analytics (ENPA) to COVID-19 management
 - The edge device is the smartphone
- Differential Privacy is enabled in state-of-the-art wearables by generating noise and perturbing sensor data at the processor.

This step needs to be repeated for each and every data produced by the sensor.

3. Explore the Overheads of Noise Generation for Wearable

> A simple wearable-based community sensing setup was implemented to measure delay and energy consumption by noise generation in state-of-the art wearable community sensing systems

Energy Consumption

7. Conclusion

SeRaNDiP

- \succ Is a framework that considers inherent sensor random noise for differential privacy preservation in wearable community sensing applications.
- \succ Leverages sensors' inherent noise by configuring sensor configurations at the software level without any hardware modifications.
- Can provide differential privacy to a variety of wearable sensors under different temperature conditions while delivering energy and latency savings. \succ Can be readily applied to today's wearables, smartwatches, and smartphones.

For more details, please refer to our

SeRaNDiP Project Page \rightarrow

This research was partially funded by Singapore National Research Foundation under -RSS2016-005 and NRF2018NCR-NCR002-0001